DSpace Repository

Uso de teledetección en la modelación del carbono de la biomasa herbácea en terrenos rehabilitados por la empresa Drummond Ltda en el departamento del Cesar-Colombia.

Show simple item record

dc.contributor.advisor Manco Jaraba, Dino Carmelo
dc.contributor.author Galvis Daza, Jorge Eliecer
dc.date.accessioned 2023-06-05T15:23:21Z
dc.date.available 2023-06-05T15:23:21Z
dc.date.issued 2022
dc.identifier.uri https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/6332
dc.description.abstract La empresa Drummond LTD ubicada en el departamento del Cesar Colombia basa su actividad económica en la extracción de carbón utilizando métodos de explotación a cielo abierto, en zonas ya explotadas ha realizado labores de rehabilitación mediante reforestación utilizando árboles y arbustos nativos. En la investigación se modelo el carbono contenido por la biomasa herbácea en terrenos rehabilitados por la empresa Drummond, mediante la correlación de datos de campo y sensores remotos utilizando el método de regresión lineal, maquinas vectoriales de soporte, random forest y k-vecinos más cercanos. spa
dc.format application/pdf spa
dc.language.iso spa spa
dc.publisher Universidad de Manizales spa
dc.relation.hasversion info:eu-repo/semantics/publishedVersion spa
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es spa
dc.subject Carbono spa
dc.subject Modelos de regresión spa
dc.subject Biomasa herbácea spa
dc.subject Sistemas de Información Geográfica (SIG) spa
dc.title Uso de teledetección en la modelación del carbono de la biomasa herbácea en terrenos rehabilitados por la empresa Drummond Ltda en el departamento del Cesar-Colombia. spa
dc.type info:eu-repo/semantics/masterThesis spa
dc.contributor.role Asesor spa
dc.rights.cc Atribución-NoComercial-SinDerivadas 4.0 spa
thesis.degree.level Maestría spa
thesis.degree.grantor Universidad de Manizales spa
thesis.degree.name Magíster en Tecnologías de la Información Geográfica spa
dc.rights.accesRights info:eu-repo/semantics/openAccess spa
dc.relation.references Ahirwal, J., & Maiti, S. K. (2017). Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. Journal of Environmental Management, 201, 369–377. https://doi.org/10.1016/j.jenvman.2017.07.003 spa
dc.relation.references Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite remote sensing of grasslands: from observation to management. Journal of Plant Ecology, 9(6), 649–671. https://doi.org/10.1093/JPE/RTW005 spa
dc.relation.references Álvarez Sánchez, J., & Harmon, M. E. (2003). Descomposición de hojarasca: Hojas y madera. In J. Álvarez Sánchez & E. Naranjo García (Eds.), Ecología del suelo en la selva tropical húmeda de México (pp. 108–122). Instituto de Ecología, A.C. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372004000200018 spa
dc.relation.references Avtar, R., Komolafe, A. A., Kouser, A., Singh, D., Yunus, A. P., Dou, J., Kumar, P., das Gupta, R., Johnson, B. A., Vuong, H., Minh, T., Kumar Aggarwal, A., & Kurniawan, A. (2020). Assessing sustainable development prospects through remote sensing: A review. Remote Sensing Applications: Society and Environment, 20, 100402. https://doi.org/10.1016/j.rsase.2020.100402 spa
dc.relation.references Awad, M., & Khanna, R. (2015). Support Vector Regression. In: Efficient Learning Machines. Apress, Berkeley, 67–80. https://doi.org/10.1007/978-1-4302-5990-9_4 spa
dc.relation.references Banerjee, B. P., & Raval, S. (2017). REMOTE SENSING TO ADVANCE SUSTAINABLE MINING PRACTICES. Conference: Asian Conference on Remote Sensing. https://a-a-r-s.org/proceeding/ACRS2017/ID_753_1652/1564.pdf spa
dc.relation.references Barliza, J. C., Peláez, J. D. L., & Campo, J. (2018). Recovery of biogeochemical processes in restored tropical dry forest on a coal mine spoil in La Guajira, Colombia. Land Degradation & Development, 29(9), 3174–3183. https://onlinelibrary.wiley.com/doi/epdf/10.1002/ldr.3069 spa
dc.relation.references Barrachina, M., Cristóbal, J., & Tulla, A. F. (2015). Estimating above-ground biomass on mountain meadows and pastures through remote sensing. International Journal of Applied Earth Observation and Geoinformation, 38, 184–192. https://doi.org/10.1016/J.JAG.2014.12.002 spa
dc.relation.references Beer, J., Ibrahim, M., Somarriba, E., Barrance, A., & Leakey, A. (2003). Establecimiento y manejo de árboles en sistemas agroforestales. In J. Cordero & D. H. Boshier (Eds.), Árboles de centroamerica: un manual para extensionistas (pp. 197–242). https://repositorio.catie.ac.cr/handle/11554/9730 spa
dc.relation.references Brivio, P. A., Maggi, M., Binaghi, E., & Gallo, I. (2010). Mapping burned surfaces in Sub-Saharan Africa based on multi-temporal neural classification. International Journal of Remote Sensing, 24(20), 4003–4016. https://doi.org/10.1080/0143116031000103835 spa
dc.relation.references Cáceres, J., Martín, M. P., & Salas, J. (2015). Análisis temporal de biomasa y stocks de carbono en un ecosistema de dehesa mediante imágenes Landsat, y su relación con factores climáticos. Ciencias Espaciales, 8(1), 190–211. https://doi.org/10.5377/CE.V8I1.2049 spa
dc.relation.references Casiano-Domínguez, M., Paz-Pellat, F., Rojo-Martínez, M., Covaleda-Ocon, S., & Aryal, D. R. (2018). Anatomía de la madera de tres especies de Mimosa (Leguminosae-Mimosoideae) distribuidas en México. Madera y Bosques, 24. https://doi.org/10.21829/myb.2018.2401894 spa
dc.relation.references Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70–85. https://doi.org/10.1016/J.ISPRSJPRS.2017.10.016 spa
dc.relation.references Chu, X., Zhan, J., Li, Z., Zhang, F., & Qi, W. (2019). Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. Journal of Cleaner Production, 215, 382–389. https://doi.org/10.1016/J.JCLEPRO.2018.12.296 spa
dc.relation.references Chuai, X., Xia, M., Xiang, A., Miao, L., Zhao, R., & Zuo, T. (2022). Vegetation coverage and carbon sequestration changes in China’s forest projects area. Global Ecology and Conservation, 38. https://doi.org/10.1016/j.gecco.2022.e02257 spa
dc.relation.references Chuvieco, E. (1996). Fundamentos de teledección. Ediciones RIALP S. spa
dc.relation.references LEY 164 DE 1994, (1994) (testimony of Congreso de Colombia). https://www.minambiente.gov.co/wp-content/uploads/2022/01/1.-Ley-160-de-1994.pdf spa
dc.relation.references Connolly Wilson, R. Y., & Corea Siu, C. A. (2007). Cuantificación de la captura y almacenamiento de carbono en sistema agroforestal y forestal en seis sitios de cuatro municipios de Nicaragua. https://repositorio.una.edu.ni/1103/ spa
dc.relation.references Estrategia institucional para la articulación de políticas y acciones en materia de cambio climático en Colombia, (2011) (testimony of Consejo Nacional de Política Económica y Social & Departamento Nacional de Planeación). https://colaboracion.dnp.gov.co/cdt/conpes/econ%C3%B3micos/3700.pdf spa
dc.relation.references Das, R., & Maiti, S. K. (2016). Estimation of carbon sequestration in reclaimed coalmine degraded land dominated by Albizia lebbeck, Dalbergia sissoo and Bambusa arundinacea plantation: a case study from Jharia Coalfields, India. International Journal of Coal Science and Technology, 3(2), 246–266. https://doi.org/10.1007/S40789-016-0131-4/FIGURES/12 spa
dc.relation.references Dávila, E. Á., & Pérez, A. (2012). Bosques y minería responsable en Antioquia. Revista Ambiental ÉOLO, 12(17), 1–14. http://revistaeolo.fconvida.org/index.php/eolo/article/view/818 spa
dc.relation.references Dönicke, D. B. (2017). Cálculo del consumo de combustible y emisiones De co2 de camiones mineros, mediante simulación Discreta. Revista Ingeniería Industrial, 16(2), 151–168. https://revistas.ubiobio.cl/index.php/RI/article/view/3316 spa
dc.relation.references Drummond Ltd. (2021). Informes de Sostenibilidad 2021. https://issuu.com/drummondltd/docs/is_drummond_2021_20220727_830_pm_sencillas?fr=sMDdjNDM5NDk1ODc spa
dc.relation.references Dube, T., Mutanga, O., Shoko, C., Samuel, A., & Bangira, T. (2016). Remote sensing of aboveground forest biomass: A review ESA-Alcantra View project Remote sensing of water use and water stress in African savanna ecosystem from local to regional scale: Implications for land productivity View project. International Society for Tropical Ecology, 57(2), 125–132. www.tropecol.com spa
dc.relation.references Durbha, S. S., King, R. L., & Younan, N. H. (2007). Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sensing of Environment, 107(1–2), 348–361. https://doi.org/10.1016/J.RSE.2006.09.031 spa
dc.relation.references ESA. (2020). Sentinel-2 MSI User Guide. https://sentinel.esa.int/web/Sentinel/user-guides/Sentinel-2-msi spa
dc.relation.references Escribano Rodríguez, J. A., Díaz-Ambrona, C. G. H., & Tarquis Alfonso, A. M. (2014). Selección de índices de vegetación para la estimación de la producción herbácea en dehesas. Pastos, 44(2), 6–18. http://polired.upm.es/index.php/pastos/article/view/3108 spa
dc.relation.references FAO. (2006). Evaluación de los recursos forestales mundiales 2005. https://www.fao.org/forestry/32145/es/ spa
dc.relation.references FAO. (2011). La gestión de los bosques ante el cambio climático. https://www.fao.org/3/i1960s/i1960s00.pdf spa
dc.relation.references FAO. (2020). Portal de Suelos de la FAO. https://www.fao.org/soils-portal/soil-management/secuestro-de-carbono-en-el-suelo/es/ spa
dc.relation.references Fernández Álvarez, H., Álvarez-Narciandi, G., García-Fernández, M., Laviada, J., Álvarez López, Y., & Las-Heras Andrés, F. (2021). A Portable Electromagnetic System Based on mm-Wave Radars and GNSS-RTK Solutions for 3D Scanning of Large Material Piles. Sensors, 21(3), 757. https://doi.org/10.3390/S21030757 spa
dc.relation.references Fernández-Habas, J., Carriere Cañada, M., García Moreno, A. M., Leal-Murillo, J. R., González-Dugo, M. P., Abellanas Oar, B., Gómez-Giráldez, P. J., & Fernández-Rebollo, P. (2022). Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions. Computers and Electronics in Agriculture, 192, 106614. https://doi.org/10.1016/J.COMPAG.2021.106614 spa
dc.relation.references Fonseca-González, W. (2017). Revisión de métodos para el monitoreo de biomasa y carbono vegetal en ecosistemas forestales tropicales. Revista de Ciencias Ambientales, 51(2), 91–109. https://doi.org/10.15359/RCA.51-2.5 spa
dc.relation.references Gao, J. (2007). Quantification of grassland properties: how it can benefit from geoinformatic technologies? International Journal of Remote Sensing, 27(7), 1351–1365. https://doi.org/10.1080/01431160500474357 spa
dc.relation.references Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., … Fernandez, V. (2017). Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sensing, 9(6), 584. https://doi.org/10.3390/RS9060584 spa
dc.relation.references Gilabert, M. A., González-Piqueras, J., & García-Haro, J. (1997). Acerca de los Indices de Vegetación. Revista de Teledetección, 1–10. spa
dc.relation.references Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7 spa
dc.relation.references Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. Int. j. Remote Sensing, 23(13), 2537–2562. https://doi.org/10.1080/01431160110107806 spa
dc.relation.references Gobernación del Departamento del Cesar. (2020). Departamento del Cesar. http://cesar.gov.co/d/index.php/es/ spa
dc.relation.references González Zárate, M. (2008). Estimación de la biomasa aérea y la captura de carbono en regeneración natural de Pinus masiminoi H. E. Moore, Pinus oocarpa var. ochoterenai Mtz, y Quercus sp. en el norte del estado de Chiapas, México. Revista Mexicana de Ciencias Pecuarias, 2(2). https://buscador.una.edu.ni/Record/RepoCATIE1699 spa
dc.relation.references Guerini Filho, M., Kuplich, T. M., & Quadros, F. L. F. D. (2019). Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 41(8), 2861–2876. https://doi.org/10.1080/01431161.2019.1697004 spa
dc.relation.references Guimar, M., Aes Da Silva, ~, Rosa Costa Muniz, A., Hoffmann, R., Carlos, A., Lisb, L., & Oa, ^. (2018). Impact of greenhouse gases on surface coal mining in Brazil. https://doi.org/10.1016/j.jclepro.2018.05.076 spa
dc.relation.references Gutiérrez, G. A., Cotes, D. A., & Bastidas, M. J. (2018). Estudio de la Combustión Espontánea del Carbón durante el Acopio en la Mina El Hatillo, ubicada en Cesar, Colombia. Información Tecnológica, 29(6), 287–294. https://doi.org/10.4067/S0718-07642018000600287 spa
dc.relation.references Hanke, J. E. (2006). Pronósticos en los negocios. Pearson Educación de México, SA de CV, 556P. https://books.google.com/books/about/Pron%C3%B3sticos_en_los_negocios_8a_ed.html?hl=es&id=JqqwtAEACAAJ spa
dc.relation.references Henao, S. A. F., A., J. D. M., & M., J. C. M. (2010). Análisis de emisiones de CO2 para diferentes combustibles en la poblacion de taxis en Pereira y Dosquebradas. Scientia et Technica, 2(45). https://doi.org/10.22517/23447214.385 spa
dc.relation.references Honorio, E. N., Timothy, C., & Baker, R. (2010). Manual para el monitoreo del ciclo del carbono en bosques amazónicos. Universidad de Leeds. Lima, 54p. spa
dc.relation.references Hou, H., Zhang, S., Ding, Z., Huang, A., & Tian, Y. (2015). Spatiotemporal dynamics of carbon storage in terrestrial ecosystem vegetation in the Xuzhou coal mining area, China. Environmental Earth Sciences, 74, 1657–1669. https://doi.org/10.1007/S12665-015-4171-7/FIGURES/6 spa
dc.relation.references Houghton, R. A., Hall, F., & Goetz, S. J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research: Biogeosciences, 114(G2), 1–13. https://doi.org/10.1029/2009JG000935 spa
dc.relation.references Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X spa
dc.relation.references Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5 spa
dc.relation.references IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H.S., Buendia L., Miwa K., Ngara T. y Tanabe K. (Eds) Publicado Por: IGES, Japón. . https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/pdf/0_Overview/V0_0_Cover.pdf spa
dc.relation.references IPCC. (2013). Glosario [Planton, S. (ed.)]. En: Cambio Climático 2013. Bases físicas. Contribución del Grupo de trabajo I al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex y P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, Reino Unido y Nueva York, NY, Estados Unidos de América. https://www.ipcc.ch/site/assets/uploads/2018/08/WGI_AR5_glossary_ES.pdf spa
dc.relation.references Irene Moral Peláez. (2016). Modelos de regresión: lineal simple y regresión logística. SEDEN, 195–214. spa
dc.relation.references Jutz, S., & Milagro-Pérez, M. P. (2018). Copernicus Program. In L. Shunlin (Ed.), 1.06 - Comprehensive Remote Sensing (pp. 150–191). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10317-3 spa
dc.relation.references Karan, S. K., Samadder, S. R., & Maiti, S. K. (2016). Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. Journal of Environmental Management, 182, 272–283. https://doi.org/10.1016/J.JENVMAN.2016.07.070 spa
dc.relation.references Kaufman, Y. J., & Tanré, D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. https://doi.org/10.1109/36.134076 spa
dc.relation.references Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2009). Carbon Storage and Fluxes within Freshwater Wetlands: a Critical Review. Wetlands, 30(1), 111–124. https://doi.org/10.1007/S13157-009-0003-4 spa
dc.relation.references Khanal, P. N., Grebner, D. L., Munn, I. A., Grado, S. C., Grala, R. K., & Henderson, J. E. (2017). Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States. Forest Policy and Economics, 75, 112–119. https://doi.org/10.1016/J.FORPOL.2016.07.004 spa
dc.relation.references Kolecka, N., Ginzler, C., Pazur, R., Price, B., & Verburg, P. H. (2018). Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sensing 2018, Vol. 10, Page 1221, 10(8), 1221. https://doi.org/10.3390/RS10081221 spa
dc.relation.references Laredo C., M. A., & Gómez S., J. (1982). Valor nutritivo de pastos tropicales, 4: Pasto Carimagua-1(Andropogon gayanus Kunth) anual y estacional. Revista ICA, 17(1), 29–36. https://repository.agrosavia.co/handle/20.500.12324/35352 spa
dc.relation.references Lechner, A. M., Kassulke, O., & Unger, C. (2016). Spatial assessment of open cut coal mining progressive rehabilitation to support the monitoring of rehabilitation liabilities. Resources Policy, 50, 234–243. https://doi.org/10.1016/J.RESOURPOL.2016.10.009 spa
dc.relation.references Li, W. J., Wang, Z., Han, Q. F., Ren, C. H., Yan, M. K., Zhang, P., Jia, Z. K., & Yang, B. P. (2013). Evaluation on carbon sequestration effects of artificial alfalfa pastures in the Loess Plateau area. Acta Ecologica Sinica, 33(23), 7467–7477. https://doi.org/10.5846/STXB201209101276 spa
dc.relation.references Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest. ICICA 2012: Information Computing and Applications, 7473, 246–252. https://doi.org/10.1007/978-3-642-34062-8_32/COVER spa
dc.relation.references López Betancur, S. I. (1998). Operacionalización de Variables (p. 8p). Universidad de Caldas . http://fcaenlinea.unam.mx/anexos/1349/1349_u2_Act2.pdf spa
dc.relation.references López-Guerrero, I., Fontenot, J. P., & Beatriz García-Peniche, T. (2011). Comparaciones entre cuatro métodos de estimación de biomasa en praderas de festuca alta Comparison of four biomass estimation methods in Tall Fescue pastures. Rev Mex Cienc Pecu, 2(2), 209–220. spa
dc.relation.references Lu, D. (2007). The potential and challenge of remote sensing‐based biomass estimation. International Journal of Remote Sensing , 27(7), 1297–1328. https://doi.org/10.1080/01431160500486732 spa
dc.relation.references Mansaray, L. R., Zhang, K., & Kanu, A. S. (2020). Dry biomass estimation of paddy rice with Sentinel-1A satellite data using machine learning regression algorithms. Computers and Electronics in Agriculture, 176, 105674. https://doi.org/10.1016/J.COMPAG.2020.105674 spa
dc.relation.references Marabel-García, M. (2016). DEPARTAMENTO DE INGENIERÍA Y CIENCIAS AGRARIAS ESCUELA SUPERIOR Y TÉCNICA DE INGENIERÍA AGRARIA ESTIMACIÓN DE LA BIOMASA AÉREA DE HERBÁCEAS CON SENSORES AEROTRANSPORTADOS DE ALTA RESOLUCIÓN. https://buleria.unileon.es/bitstream/handle/10612/5735/Tesis%20Miguel%20Marabel.pdf?sequence=1&isAllowed=y spa
dc.relation.references Marove, C. A., Sotozono, R., Tangviroon, P., Tabelin, C. B., & Igarashi, T. (2022). Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environmental Advances, 8. https://doi.org/10.1016/J.ENVADV.2022.100215 spa
dc.relation.references Mendoza Daza, A. D. (2009). Prevención y control de autocombustión del carbón in situ en la mina Carbones del Cerrejón Limited [Universidad Nacional de Colombia, sede medellin.]. https://repositorio.unal.edu.co/handle/unal/2584 spa
dc.relation.references Michie, D. (1968). “Memo” Functions and Machine Learning. Nature, 218, 19–22. https://doi.org/10.1038/218019a0 spa
dc.relation.references Ministerio de ambiente y desarrollo sostenible. (2017). Política nacional de cambio climático (Á. Barragan, Ed.). www.minambiente.gov.co spa
dc.relation.references Ministerio de Ambiente y Desarrollo Sostenible. (2017). POLÍTICA NACIONAL DE CAMBIO CLIMÁTICO. www.minambiente.gov.co spa
dc.relation.references Ministerio de minas y energía. (2003). Glosario técnico minero (p. 168p). https://www.anm.gov.co/sites/default/files/DocumentosAnm/glosariominero.pdf spa
dc.relation.references Ministerio de minas y energia. (2018, August 2). Resolución 40807 de 2018. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=21766 spa
dc.relation.references Mohd Zaki, N. A., & Abd Latif, Z. (2016). Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling. Geocarto International, 32(7), 701–716. https://doi.org/10.1080/10106049.2016.1178814 spa
dc.relation.references Mónaco, N., V., S., M.J., R., & V., A. (2017). Evaluación De Métodos Indirectos Para Estimar Biomasa En Un Pastizal Natural Del Sur De Córdoba (Argentina Central). European Scientific Journal, ESJ, 13(36), 59. https://doi.org/10.19044/esj.2017.v13n36p59 spa
dc.relation.references Muñoz Aguayo, P. (2013). Apuntes de teledetección : índices de vegetación. In Centro de Información de Recursos Naturales (p. 15p). CIREN. https://bibliotecadigital.ciren.cl/handle/20.500.13082/26389 spa
dc.relation.references Naciones Unidas. (1998). PROTOCOLO DE KYOTO DE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE EL CAMBIO CLIMÁTICO. https://unfccc.int/resource/docs/convkp/kpspan.pdf spa
dc.relation.references Naidoo, L., van Deventer, H., Ramoelo, A., Mathieu, R., Nondlazi, B., & Gangat, R. (2019). Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa. International Journal of Applied Earth Observation and Geoinformation, 78, 118–129. https://doi.org/10.1016/J.JAG.2019.01.021 spa
dc.relation.references Navarro, J. A., Algeet, N., Fernández-Landa, A., Esteban, J., Rodríguez-Noriega, P., & Guillén-Climent, M. L. (2019). Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sensing, 11(1), 77. https://doi.org/10.3390/RS11010077 spa
dc.relation.references Pérez Gutiérrez, C., & Muñoz Nieto, Á. L. (coord. ). (2002). Teledetección : nociones y aplicaciones. Universidad de Salamanca. https://dialnet.unirioja.es/servlet/libro?codigo=5256 spa
dc.relation.references Pérez Trujillo, M. A. (2021). Técnicas de Minería de Datos Supervisadas en el Espacio de Vida de Adultos Mayores de la Ciudad de Manizales [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/80826/1075282588.2021.pdf?sequence=2&isAllowed=y spa
dc.relation.references Petropoulos, G. P., Partsinevelos, P., & Mitraka, Z. (2012). Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto International, 28(4), 323–342. https://doi.org/10.1080/10106049.2012.706648 spa
dc.relation.references Pietrzykowski, M., & Daniels, W. L. (2014). Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecological Engineering, 73, 209–218. https://doi.org/10.1016/J.ECOLENG.2014.09.058 spa
dc.relation.references Placek-Lapaj, A., Grobelak, A., Fijalkowski, K., Singh, B. R., & Almás, Á. R. (2019). Post – Mining soil as carbon storehouse under polish conditions. Journal of Environmental Management. https://doi.org/doi.org/10.1016/j.jenvman.2019.03.005 spa
dc.relation.references Post, W. M., & Kwon, K. C. (2008). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6(3), 317–327. https://doi.org/10.1046/J.1365-2486.2000.00308.X spa
dc.relation.references Programa de las Naciones Unidas para el Desarrollo. (2012). Objetivos de Desarrollo Sostenible | Programa De Las Naciones Unidas Para El Desarrollo. https://www.undp.org/es/sustainable-development-goals spa
dc.relation.references Punalekar, S. M., Verhoef, A., Quaife, T. L., Humphries, D., Bermingham, L., & Reynolds, C. K. (2018). Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sensing of Environment, 218, 207–220. https://doi.org/10.1016/J.RSE.2018.09.028 spa
dc.relation.references Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1 spa
dc.relation.references Raval, S., Sarver, E., Shamsoddini, A., & Zipper, C. E. (2018). Satellite remote sensing-based: Estimates of biomass production on reclaimed coal mines. Mining Engineering, 66(4), 76–82. www.miningengineeringmagazine.com spa
dc.relation.references Rezaei, N., & Jabbari, P. (2022). K-nearest neighbors in R. Immunoinformatics of Cancers, 181–190. https://doi.org/10.1016/B978-0-12-822400-7.00006-3 spa
dc.relation.references Rodrigo, J. A. (2020, October). Random Forest con Python. Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785 spa
dc.relation.references Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7 spa
dc.relation.references Rossini, M., Migliavacca, M., Galvagno, M., Meroni, M., Cogliati, S., Cremonese, E., Fava, F., Gitelson, A., Julitta, T., di Cella, U. M., Siniscalco, C., & Colombo, R. (2014). Remote estimation of grassland gross primary production during extreme meteorological seasons. International Journal of Applied Earth Observation and Geoinformation, 29(1), 1–10. https://doi.org/10.1016/J.JAG.2013.12.008 spa
dc.relation.references Rouse, J. W. , Jr., Haas, R. H., Schell, J. A., Deering, D. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A, 309–317. https://ntrs.nasa.gov/citations/19740022614 spa
dc.relation.references Salas Macías, C. A., Alegre Orihuela, J. C., & Iglesias Abad, S. (2017). Estimation of above-ground live biomass and carbon stocks in different plant formations and in the soil of dry forests of the Ecuadorian coast. Food and Energy Security, 6(4). https://doi.org/10.1002/FES3.115 spa
dc.relation.references Sanci, R., Panarello, H. O., & Ostera, y H. A. (2010). Flujo de dióxido de carbono en el flanco oriental del volcán Peteroa, Andes del Sur. Revista Mexicana de Ciencias Geológicas, 27(2), 225–237. spa
dc.relation.references Santiago, M. M., LastNameAlves Da Silva, H., Domiciano, J., Tiago, G., & LastNameLastNameDe Oliveira, H. (2009). Análise da Cobertura Vegetal Através dos Índices de Vegetação (NDVI, SAVI e IAF) no Entorno da Barragem do Botafogo-PE. XIV Simpósio Brasileiro de Sensoriamento Remoto, 3003–3009. spa
dc.relation.references Shackelford, N., Miller, B. P., & Erickson, T. E. (2018). Restoration of Open-Cut Mining in Semi-Arid Systems: A Synthesis of Long-Term Monitoring Data and Implications for Management. Land Degradation & Development, 29(4), 994–1004. https://doi.org/10.1002/LDR.2746 spa
dc.relation.references Snowdon, P., Raison, R. J., Keith, H., Ritson, P., Grierson, P., Adams, M., Montagu, K., Bi, H.-Q., Burrows, W., & Eamus, D. (2002). Protocol for sampling tree and stand biomass. In Environment Australia Catalogación en la publicación (p. P66). Canberra, Australian Greenhouse Office. https://www.researchgate.net/publication/298252249_Protocol_for_Sampling_Tree_and_Stand_Biomass spa
dc.relation.references Soares Miranda, V., Guimarães Ribeiro, K., Christófaro Silva, A., Cristina Pereira, R., Gomes Pereira, O., Vidal Torrado, P., Sebastião Cunha Fernandes, J., Coura Oliveira, M., & Brasileira de Zootecnia, R. (2012). Rehabilitation with forage grasses of an area degraded by urban solid waste deposits. Revista Brasileira de Zootecnia, 21(1), 18–23. www.sbz.org.br spa
dc.relation.references Song, C., Chen, J. M., Hwang, T., Hakkenberg, C., & Li, J. (2015). Ecological characterization of vegetation using multisensor remote sensing in the solar reflective spectrum. En Prasad Thenkabail. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (pp. 533–575). United States: Geological Survey. https://doi.org/10.1201/b19322 spa
dc.relation.references Sousa, A. M. O., Marques Da Silva, J. R., Gonçalves, A. C., Mesquita, P. A., Silva, L. L., & Batista, F. (2013). ESTIMACIÓN DE LA BIOMASA FORESTAL PARA LAS ESPECIES QUERCUS ROTUNDIFOLIA Y QUERCUS SUBER BASADA EN IMÁGENES DEL SATÉLITE QUICKBIRD. In T. de A. INTA (Ed.), XV Congreso de la Asociación Española de Teledetección. https://dspace.uevora.pt/rdpc/bitstream/10174/8936/1/XV_CongressoAET_out2013_BIOMASSA.pdf spa
dc.relation.references Tanré, D., Holben, B. N., & Kaufman, Y. J. (1992). Atmospheric Correction Algorithm for NOAA-AVHRR Products: Theory and Application. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 231–248. https://doi.org/10.1109/36.134074 spa
dc.relation.references Tao, S., Guo, Q., Wu, F., Li, L., Wang, S., Tang, Z., Xue, B., Liu, J., & Fang, J. (2016). Spatial scale and pattern dependences of aboveground biomass estimation from satellite images: a case study of the Sierra National Forest, California. Landscape Ecology, 31(8), 1711–1723. https://doi.org/10.1007/S10980-016-0357-Y/FIGURES/5 spa
dc.relation.references Toosi, A., Javan, F. D., Samadzadegan, F., Mehravar, S., Kurban, A., & Azadi, H. (2022). Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time series and feature fusion of multi-source satellite imageries. Ecological Informatics, 70, 101733. https://doi.org/10.1016/J.ECOINF.2022.101733 spa
dc.relation.references Tripathi, N., Singh, R. S., & Nathanail, P. (2013). Mine spoil acts as a sink of carbon dioxide in Indian dry tropical environment. Science of the Total Environment, 468–469, 1162–1171. https://doi.org/10.1016/j.scitotenv.2013.09.024 spa
dc.relation.references Unidad de Planeación Minero Energética. (2022). Carbon. https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/carbon.aspx spa
dc.relation.references Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., & Bui, D. T. (2018). Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sensing 2018, Vol. 10, Page 172, 10(2), 172. https://doi.org/10.3390/RS10020172 spa
dc.relation.references Vapnik, V. (1998). The Support Vector Method of Function Estimation. In: Suykens, J.A.K., Vandewalle, J. (Eds) Nonlinear Modeling. Springer, Boston, MA., 55–85. https://doi.org/10.1007/978-1-4615-5703-6_3 spa
dc.relation.references Vásquez Sierra, E. B., & Herrera Builes, J. F. (2006). METODOLOGÍA PARA LA CARACTERIZACIÓN DE COMBUSTIBLES SÓLIDOS MADERABLES DEL ÁREA METROPOLITANA DEL VALLE DE ABURRÁ “AMVA”, COLOMBIA. Revista Facultad Nacional de Agronomía Medellín, 59(2), 3557–3564. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472006000200011&lng=en&nrm=iso&tlng=es spa
dc.relation.references Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., & Strauss, P. (2018). Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sensing 2018, Vol. 10, Page 1396, 10(9), 1396. https://doi.org/10.3390/RS10091396 spa
dc.relation.references Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R. B., & Chang, Q. (2019). Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 189–201. https://doi.org/10.1016/J.ISPRSJPRS.2019.06.007 spa
dc.relation.references Wang, L., Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 4(3), 212–219. https://doi.org/10.1016/J.CJ.2016.01.008 spa
dc.relation.references Wang, Y., Zhang, Z., Feng, L., Du, Q., & Runge, T. (2020). Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sensing, 12(8), 1232. https://doi.org/10.3390/RS12081232 spa
dc.relation.references Wang, Z., Lechner, A. M., Yang, Y., Baumgartl, T., & Wu, J. (2020). Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Science of The Total Environment, 717, 137214. https://doi.org/10.1016/J.SCITOTENV.2020.137214 spa
dc.relation.references Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/J.RSE.2019.111383 spa
dc.relation.references XiaoPing, X., Lei, D., Wei, C., XiaoYu, Z., BaoRui, C., ZhongLing, L., GuangLi, H., GeLe, Q., GuiXia, Y., & HuaJun, T. (2020). Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China. Scientia Agricultura Sinica, 53(13), 2757–2768. https://doi.org/10.3864/J.ISSN.0578-1752.2020.13.022 spa
dc.relation.references Xue, Y. (2020). Empirical research on household carbon emissions characteristics and key impact factors in mining areas. Journal of Cleaner Production, 256, 120470. https://doi.org/10.1016/j.jclepro.2020.120470 spa
dc.relation.references Yaranga Cano, R. M., & Custodio Villanueva, M. (2013). Storage of carbon in natural grasses high andean. 4, 313–319. www.sci-agropecu.unitru.edu.pe spa
dc.relation.references Yepes Quintero, A. Patricia., Duque Montoya, A. Javier., Navarrete Encinales, D. Alejandro., Phillips Bernal, J. Fernando., & Instituto de Hidrología, M. y E. A. (Colombia). (2011). Protocolo para la estimación nacional y subnacional de biomasa-carbono en Colombia. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM-. Bogotá D.C., 162 p. http://www.ideam.gov.co/documents/13257/13548/Protocolo+para+la+estimaci%C3%B3n+nacional+y+subnacional_1.pdf/11c9d26b-5a03-4d13-957e-0bcc1af8f108 spa
dc.relation.references Zhu, L., Song, R., Sun, S., Li, Y., & Hu, K. (2022). Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecological Indicators, 142. https://doi.org/10.1016/j.ecolind.2022.109178 spa
dc.relation.references Zuluaga, L. Z., Stiven, E., & Escobar, C. (2018). ASSESSMENT OF ENVIRONMENTAL SERVICES BY CO2 CAPTURE IN A TROPICAL DRY FOREST ECOSYSTEM IN THE MUNICIPALITY OF EL CARMEN DE BOLIVAR, COLOMBIA. Luna Azul, 47, 1–20. https://doi.org/10.17151/luaz.2019.47.1 spa
dc.relation.references Zuluaga Zuluaga, L., & Castro Escobar, E. S. (2018). Valoración de servicios ambientales por captura de CO2 en un ecosistema de Bosque seco Tropical en el municipio de El Carmen de Bolívar, Colombia. Luna Azul, 47, 01–20. https://doi.org/10.17151/LUAZ.2019.47.1 spa


Files in this item

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

Search DSpace


Browse

My Account